
NASA-CR-194740

031155-1-T

A new conformal absorbing boundary condition

for finite element meshes and parallelization of
FEMATS

A. Chatterjee, J. L. Volakis, J. Nguyen,

M. Nurnberger and D. Ross

,4"
National Aeronautics

O O
and Space Administration o _

Ames Research Center _ _I ,..- cO
Moffett Field CA 94035 _* u o-

_ 7,,,,¸¸

December 1993

THE UNIVERSITY OF MICHIGAN

Radiation Laboratory

Department of Electrical Engineering

and Computer Science

Ann Arbor, Michigan 48109-2122

USA

_0

0
_Z
ZO
O_

WZ _
ZO_w

UW_

OO Z,

_Ow_C

I _W#,.

I

Report #031155-1-T

NASA Ames Grant NAG 2-866

PROGRESS REPORT

Grant Title: Development and Parallelization of the Finite Element
Method with Mixed Termination Schemes

Report Title: A new conformal absorbing boundary conditions for
finite element meshes and parallelization of FEMATS

Report Aothors: A. Chatterjee, J. L. Volakis, J. Nguyen,
M. Nurnberger and D. Ross

Primary_ University Collaborator: John L. Volalds

Volakis@ um.cc.umich.edu

Telephone: (313) 764-0500

Primary_ NASA-Ames Collaborator: Alex Woo

woo@ra-next.arc.nasa.gov
Telephone: (415) 604-6010

University Address: Radiation Laboratory
Department of Electrical Engineering

and Computer Science
The University of Michigan
Ann Arbor M148109-2122

Date: December 1993

Funds for the support of this study have been allocated in part by the NASA-Ames
Research Center, Moffett Field, California, under Grant No. NAG 2-866.

7 r : :

TABLE OF CONTENTS

Preface/Summary .. i

New Conformal Absorbing Boundary Conditions 1

Introduction .. I

Formulation .. 2

Unsymmetric ABCs ... 3

Symmetric ABCs ... 7

Finite Element Implementation .. 8

Applications ... 13

Composite Cube .. I 3

Inlets .. 14

Perfectly Conducting Plates .. 20

Glass Plate ... 27

Conclusion

Parallelization of FEMATS for the iPSC/860 30

FEMATS Users Manual ... 35

APPENDIX ... 54

A Preprocessing Algorithm to Find Boundary Surfaces and Normals

Element Structures

Preface

This report describes some of our progress toward the development and parallelization of

an improved version of the finite element code FEMATS. This is a finite element code for

computing the scattering by arbitrarily shaped three dimensional surfaces composite scat-

terers.We have been working on the following tasks:

1_ New ABCs for truncating the finite element mesh

2. Mixed mesh termination schemes

3. Hierarchical elements and multigridding

4. Parallelization _

5. Various modeling enhancements(antenna feeds, anisotropy, higher order GIBC)

So far (approx. 5 months after the start date) we have concentrated on tasks 1, 3 and 5.

Most of this report is devoted to task 1 and task 4. However, progress have been made

toward task 2 and 5, although not yet formally written.

• The first section describes the new absorbing boundary conditions and their implemen-

tation. As pointed out in this section, care must be exercised in the implementation of

the code to yield a symmetric matrix. Much effort was devoted on this aspect before the

final implementation was carried out. Obviously, a good portion of our effort was

devoted to the validation of the new ABCs and the new version of FEMATS. Toward

this purpose, the RCS of several EMCC benchmark targets is included in this section.

These include the rectangular inlet, circular inlet, metallic plates and the dielectric

(glass) plate. In the case of the rectangular plate, it is important to note that substantial

improvement was achieved on using the new ABCs. It remains to consider the

"almond" target and the dielectric cylinder with embedded wires and our intent was to

have included data for at least one of these targets. Unfortunately, hardware difficulties

and scheduled shutdowns of the University's MPP did not allow us to complete runs for

either the almond or the dielectric cylinder before the end of the year. Our findings

clearly demonstrate that sufficiently accurate results can be obtained by placing the new

ABC _ 0.3 wavelengths away from the target and on a boundary which "hugs" the

outline of the structure. The computational and memory savings are indeed substantial

when such a conforma!ABC is__e_rnployed in FEMATS, and this is quatitatively

depicted in the attached figures.

• The second section of the report describes the approach used to parallelize FEMATS on

the Intel iPSC/860. This parallelization is, of course, pertaining to the earlier version of

FEMATS which does not incorporate the new conformal ABCs. Both the solver and the

matrix generation sections of the code were parallelized. In addition, preliminary

results are presented on the code's performance on the iPSC/860. It should be noted

that the code was originally parallelized on the'KSR1 and many of the runs reported in

this report have been executed on the University's 64-processor KSR1.

• The third sectionof thereport is thecode'susersmanual.This manualdescribesthe
input dataformat, preprocessorandthepostprocessor.It is assumedthat theuserwill
be familiar with somethreedimensionalmeshgenerator.Currently,thecodeis inter-
facedwith thecommercialmeshgeneratorSDRCI-DEAS. However,very simplemod-
ification areneededin thepreprocessorin orderto interfacewith otherpackages.

• Finally, AppendixA of this reportdescribesa preprocessorwhichcanbeusedto auto-
matically find themetallicsurfacesandouterboundarysurfacesof themesh.This algo-
rithm will simplify the preprocessing of the mesh data but due to time restrictions, it

has not been incorporated into final version of the FEMATS code.

Future Work

We are looking at a variety of tasks aimed at improving the efficiency, accuracy anduser

friendliness of the FEMATS code. Among these are:

1. The incorporation of graph tools into the preprocessor to eliminate communication dif-

ficulties between the mesh generator and the FEMATS electromagnetics solver.

2. Parallelization of the FEMATS version using the new ABCs

3. Additional validation

4. Use of higher order/hierarchical elements at the outer layer of the mesh to accommo-

date higher order ABCs

5. Improved solvers

6. Mixing oftetrahedral and quadrilaterals to reduce the degrees of freedom

7. Incorporation of a hybrid high frequency/finite element formulation

g.--_fia applicati0as _ _ _::7 " ::

9. Validation for targets greater than 5 wavelengths in length

10.Validation of FEMATS for anisotropic material simulations.

and so on.

5_5.

2OO0

1600

1200

8OO

400

0

MoM

New.A_.C..(:.2.X).....
..N_w..A_C(,,_.X).........
F_-evlousAeC6_X)

J
J

J

J
J

__::....:::: ..._::

• • • • • | • i • I w | • i w • • i •

2 3

L in wavelengths

VI = volume of cylinder

V_ --volume enclosedby ABC boundaxy

Number of unknowns = 20,000(V2- Vz) = N

Storage = 27N

Projected storage requirements of the envisioned finite element code

using the new proposed ABCs for truncating the mesh conformal to

the structure. The curves correspond to a metallic cylinder of radius

2.5L and length 10L. For the previous ABCs the mesh is truncated on

a rectangular parallelepiped as required by the physics of this ABC.

Note that the corresponding Moment Method (MoM) curve is off scale.

iii

E

_-Y'- _c-r -_ .

_,#-

250

200

100

5O

0

2

L in wavelengths
3

_L

N = # of unknowns (seeFigure6)

CPU times on KSRI = (1.37x 10-6 × N × _0) sec
AT

= convergencerate

Projected CPU times of the envisioned finite element code using the

new proposed ABCs placed at 0.3A and 0.2A away from the surface of

a cylindrical structure. Also shown is the corresponding CPI] curve

using the previous ABC enforced on a parailelepiped enclosing the
cylinder.

j.,¢

New conformal absorbing boundary

conditions for the FEMATS code

1 Introduction

Since we are dealing with large targets having arbitrary shape, a spherical

mesh termination boundary is not as attractive in terms of storage and com-

putational cost. This is especially true for long and thin geometries where

a sphere is the least economical shape of mesh termination, in terms of the

number of unknowns. The ideal situation would be to enclose the scatterer

inside a mesh termination boundary which is of the same shape as the scat-

tering body (see Figure 1). If boundary conditions could be derived for such

conformal mesh truncation surfaces, the volume to be meshed and the corre-

sponding computing cost would then be minimized. However, available three

dimensional ABCs for the vector wave equation as derived by Peterson[1] and

Webb and Kanellopoulos[2] are only suited for application on spherical mesh

terminations.

Our goal, therefore, is to derive new vector ABCs for three dimensional

analysis which can be applied on a surface conformal to the structure of

interest. We begin with a modified Wilcox expansion whose leading order

term recovers the geometrical optics fields and thus, given the appropriate

principal curvatures, the resulting ABC completely absorbs all geometrical

optics fields from the surface. We then proceed to derive the first and second

order absorbing boundary conditions in terms of the principal curvatures of

the surface on which they are employed. We also introduce an approximation

to make the absorbing boundary condition contribution symmetric. In the

next step, we incorporate these boundary conditions into the finite element

1

Figure 1: Scatterer enclosedin conformal meshtermination boundary

equations and express them in a readily implementable form. We also com-

ment on the symmetry of the system for doubly curved surfaces. In the last

section, we examine the performance of these ABCs - in terms of compu-

tational cost - when applied on mesh termination surfaces conformal to the

scattering object.

2 Formulation

It is known that the electric field in a homogeneous region of space is governed

by the vector wave equation

VxVxE- k_E = 0 (1)

where ko is the free-space wave number. We assume that the field has a well-

defined phase front in the region under consideration. Since we are concerned

only with local behavior, we can assume that the phase fronts can be treated

as parallel regions. Consequently, the surface describing the phase fronts can

be specified by a net of coordinate curves denoted by tl and t2 and a third

variable n denotes the coordinate along the normal to the phase front. The

point of observation in the Dupin coordinate system[3] can now be defined
as

x = nfi + Xo(tl, t2) (2)

2

where fi is the unit normal and x_ (tl, t2) denotes tile surface of the reference

phase front. The curl of a vector in ttle above coordinate system is given by

OE

T×E = _'_7T × E-i-fl X 0---_ (3)

where VT x E is called the surface curl involving only the tangential deriva-

tives and is defined as [4]

VT X E = -fix VE,, + [2_1Et, - [1K2Et_ + fiV. (E x fi) (4)

In (4), nl and n2 denote the principal curvatures of the surface under consid-

eration, E,_, Et= are the tangential components and E,_ is the normal compo-
nent of the electric field on the surface. The principal curvature of a surface

is defined as[3]

1 1 Oh1

"1 = = on (5)
1 1 Oh2

x2 = _ - (6)
R2 h2 On

where hi, h2 are the metric coefficients and R1, R2 are the principal radii of

curvature.

Using the aforementioned coordinates, the Wilcox expansion for a vector

radiating function can now be generalized to read

e -jko" _ Ep(q,t2)

where Ri = pi -1- n., i = 1,2 and pi is the principal radius of curvature

associated with the outgoing wavefront at the target. The lowest-order term

in (7) represents the geometrical optics spread factor for a doubly curved
wavefront and reduces to the st.a.nd_r.d Wilcox expansion[5] for a spherical

wave. Moreover, (7) can be differentiated term by term any number of times

and the resulting series converges absolutely and uniformly[5].

2.1 Unsymmetric ABCs

In the 3D finiteelement implementation using vectorbasisfunctionsand

the electricfieldas the working variable,we need to relatethe tangential

component of the magnetic field in terms of the electric field at any sur-

face discontinuity. Therefore, our next task is to derive a relation between

fix VxE (i.e., fl x H where H is the magnetic field) and the tangential

components of the electric field on the surface. Taking the curl of the electric

field expansion given by (7) and crossing it with the normal vector, we have

fix VxE
e-Jkon

4"lr -_

(jko + ,_m- _.)Ep,
up+I

V t Ep,, + plc_ Ept]
+ _7+_ j (8)

where u = Rx/-R_1R_ and

VtE,, = -(fixfixV) E,,

tq + 1¢2

2

= Nlilt I + _;2t2t2

Considering that E0,, is zero due to the divergenceless condition[5] and sim-

plifying, we obtain the first order absorbing boundary condition

e -_°" _' VtEp_ +
fix V xE - (jko + _;,,, - 7") Et = _4_r _-" u p+'p_c''E_'t (9)

p=l

or, fi x VxE-(jko+_c,,_--_-i.)Et = 0 +O(n -z) (10)

for a conformal outer boundary. Not surprisingly, this is the impedance

boundary condition for curved surfaces as derived by Rytov[6]. It should

be noted that in the above equation, VtE,, and to,, are each proportional

to n -1. Therefore, the leading order behavior of (10) is O (n-a), i.e., only

the first two terms of (7) are exactly satisfied by (10). If the scattered field

contains higher order terms, application of (10) will give rise to non-physical

reflections back into the computational domain. In order to reduce these

spurious reflections, we need to either shift the mesh truncation boundary

farther away from the scatterer or employ higher order boundary conditions

which satisfy higher order terms of (7).

To reduce the order of the residual error further, we consider the tangen-

tial components of the curl of (9). This yields

fi x Vx[fi x VxE-(jko + _¢,_- _-)Et] =

_-jkon

477, p=l Km UP+I

- _--_ _,,,+, J
(;1)

where ng = nln2 is the Gaussian curvature. Using the result derived in (9)

and simplifying, (11) reduces to

fi x Vx [fi × VxE-(jko + _,_,- 7-)Et] =

jko + (p + 3)nm 7"
= N'm IZ p+l

"¢m

(12)

If we take a closer look at the term in the square brackets on the RHS of

(12), we find that it can be written as

e-Jko,_ _-'_° VtEp,_ + ptcmEvt
47r A.., P_ uV+l

p=l

t¢ m

x VxE - (jko + _,_ - 7") Et}

where we have substituted

4_ 7-;=L _,¥_ J × - -
(13)

using the relation derived in (9).

Now the dominant terms on the RHS of (12)

the higher-order operator

can be eliminated by considering

[fix Vx- (jko + 3_m _g 7")1 {fix VxE-(jko +,¢,,-7")Et} +
I¢ m

(I¢,9) e-jk°n _ VtEpn+pRmEvt2_,_ _,_ 7" VtE,_- _ p=lP_'_ uP+'
(14)

The residual of (14) can be reduced further to yield the absorbing boundary

condition of second order which satisfies (7) to O (n-S). This second order

5

ABC is found to be

[fi xVx- (jko+4_m)]7 {fixVxE-(jko+K_-rl.tEt}+
I_rn

2n,,, 7" V'tE_ = 0 (15)
/grn

and the residual is equal to

e-jkon eo

4_- _'-]_(P- 1)_:m VtE;0,_ + p_,.,,E;0t (16)
;0----2 uP+I

The operator on the LHS of (15) can be applied repeatedly to obtain ABCs

of increasing order; however, higher order basis functions are needed for their

implementation.

After some algebraic manipulation, the terms on the LHS of (15) reduced

to simpler ones. In addition to the wave equation, the following vector iden-

tities were derived to carry out the simplifications and are provided below
for the reader's convenience:

I_I×V×Et : fixVxE-VtEn

fl X VxVtEn : Vt (V.Et) ÷ 2tCmVtE n

fixVx(fixVxE) -- Vx{fi(VxE),,I-k_Et+A_fixVxE

where Ate = tq -- t¢2. The derivation of these identities is given in Appendix

B. Upon simplification, the second order ABC can be compactly written as

-(D- Am- 2-_.)fi x VxE+ {4a_- _g + D(jko-_.)+ (7)2.}Et

/¢m

in which

and

D = 2jko + 5_ _g
I_rn

(7) 2. E, = _Et, t,x + t_]Et2t,2

The derivatives of the curvatures in (17) have been ignored due to the rea-

sons outlined in [4]. These derivatives essentially give rise to second-order

curvature terms which add to the coefficient of Et only. The second order

ABC derived in [1] is recovered on setting _1 = t¢_ = 1Iv.

2.2 Symmetric correction

It hasbeenshownby Petersonin [1] that the LHS of (17) when incorporated
into the finite element equations gives rise to an unsymmetric matrix sys-
tem ill spherical coordinates. To alleviate this problem, Kanellopoulos and
Webb[2] suggestedan alternative derivation involving an arbitrary parame-
ter which would lead to a symmetric matrix while sacrificing someaccuracy.
Below, we discuss a different approach which leads to a symmetric ABC
without the introduction of an arbitrary parameter.

On considering the seriesexpansionof the term fl × XTx_tE,_, wehave

e-jkon oo

fixX7xVtEn - 4rr __,{jko+(p+l)t¢,,.,} TtEpnuv+l
p=l

=. jkoVtE,., + 2_mVtE,, + __,(p- 1)_ VtEr"_
ttP+ 1

p=2

= jkov,zo+2 v,zo +o

and on making use of the vector identity

Vt (V. gt) = fix VxVtE,_ - 2_,.,,VtE,.,

given earlier, we arrive at the following result

v, (V.E,)= jkoV,,Zo+o (18)

Since our ABC was derived to have a residual error of O (n-S), we can replace

jkoVtE,., with Vt (V'Et) without affecting the order of the approximation.

Doing so, the second order ABC with a symmetric operator can be rewritten

as

(D - A_- _.)_ ×V×E = {4_ - _ + D0ko- _') + (_)="}E,+

1(_)Vx {fi(VxE),,} + _ jko + atom tgm 2_" Vt (V'Et) (19)

It can be easily shown that the above boundary condition leads to a symmet-

ric system of equations when incorporated into the finite element functional

for surfaces having tel = g2. Equations {10) and (19) reduce to the boundary

conditions derived in [2] on setting _l = t¢2 = 1/r which have been found to

work well for spherical and flat boundaries[7].

2.3 Finite element implementation

The boundary condition outlined in equation (19) cannot be incorporated

into the finite element equations without modification. As explained in Chap-

ter 3, the absorbing boundary condition is implemented in the finite element

system through the surface integral over the mesh termination surface 5'°.

(s E.fixVxEdS = fs E-P(E) dS
o o

where P(E) denotes the boundary condition relating the tangential magnetic
field to the tangential electric field on the surface.

Let PI(E) denote the first order absorbing boundary condition given by

(10), where the subscript represents the order of the ABC. Therefore, the

surface integral contribution for the first order ABC reduces to

fsoE" P,(E) dS = (jko + x,.) fsoE" E, dS- fsoE.(_. Et) dS (20)

Using some basic vector identities and considering that Et = -fix fi x E,
we deduce that

(21)

which is a readily implementable form of the first order ABC. However, the

second order ABC does not simplify as easily. If P2(E) denotes the second

order ABC given by (19), we can rewrite it in more compact vector notation
as

P2(E) = _.E,+B.[Vx {fi(VxE).}]+_.{V,(V.E,)} (22)

B

where the tensors N,/3 and _ ar e given by

-_ = D- At:- 2tq 4x_ - tzg + D(jko - xl) + x tltl

1

{4x_ - x_g+ D (jko - x2) + x_} tzt2D - Ax - 2x2

1 1

D- An- 2nl D- Ax- 2x2

(23)

(24)

= 1 (jt%(D - .k_ - 2,_,) j;'° + 3,{,_

, (+ jko(D - 5,_ - 2,,:2) jko + 3,{m

2,,'1 {,{I
K. m

'{g 2K_){2{2
/'_ rn

(25)

Substituting the second-order absorbing boundary condition in the sur-

face integral given in (22), we have

/so E-P2(E) dS

+_ E. {$. _7,(V.Et)} dS
o

= I,+I2+Ia

Let us examine the integral I,. Since Et = -fix fix E, we have

I, = fs °qE_l + a=E_= dS (26)
o

after employing some simple vector identities.

The other two integrals (/'2 and Ia) do not reduce as easily to simple,

implementable forms. They are first simplified using basic vector and tensor

identities and then the divergence theorem is employed to eliminate one of

the terms. Considering the integrand of the second integral I2, we note that

where we have set ¢ = (VxE),_. Using some additional vector identities and

letting/3 • E = F, we get

F-Vxf,¢ = V.(¢nxF)+¢,_.VxF

= v. (¢e, × F) + ¢

Using the results from [3], the first term in the above identity can be further

simplified to read

0

v-(eft×F) = Vs.(¢fixF)+_nn {eft" (fixF)}-J{¢fi'(fixF)}

= Vs. (eft × F) (27)

where-V, denotesthe surfacegradient operator and J = K_+x2. The integral
I2 can now be written as

I: = /_ V,. (Off × F) dS +/_ _(_×F). dS
o J,._2,'o

We can now apply the surface divergence theorem to the first term on the

RHS of the this expression to yield

fsoVs'(CfixF) dE = /ccrh'(fi ×F) dl=O (28)

since the surface So is closed. We note that rh = 1 x fi and 1 is the unit

vector along the edge of the surface element and C denotes the contour of

integration. On the basis of (28), /2 reduces to

Is = fSo(VXE),, {Vx(_. E)},, dS (29)

We now turn our attention to simplifying/3 for implementation in the

finite element equations. Considering the integrand of/3, we have

E. {7-V,(V.E,)} = (7-E). {V,(V.E,)}

= (7" E). {re- n_n}"0¢

where ¢ = V • Et. Next, setting G = 7" E, we obtain

{ 0¢}G. _7¢_n_nn =V.(¢G)_¢V.G_G,_n n (30)

The first term in the above identity can be written as

0
v. (¢G) = vo. (Ca) + _ (¢G.) - J (¢G.)

and since OG,_/On = V . G - V. Gt + JG,,, the LHS of (30) reduces to

{a. v¢ - n_--g_ - v,. (Ca) - Cv. a, (31)

10

We now replacethe integrand of 13 with the expression in (31) and use the

divergence theorem to eliminate the first term of (31). Specifically,

= £ov,. (v,a)ds-£o a, ds
_.,V. Gt dS

where rh has been defined earlier and the contour integral vanishes since the

surface is closed. The integral I3 can finally be rewritten as

la = - fs (V. E,)(V. Gt) dS (32)
o

Using (26), (29) and (32), the complete surface integral term incorporat-

ing the conformal second order ABC reduces to

/so E. P2(E) dS

- fso (v. E,) {V. (_. E),} dS (33)

It remains to be seen whether the integrals in (33) lead to a symmetric

system when incorporated into the finite element equations. With this in

mind, we will examine three simple shapes and check whether they preserve

symmetry of the finite element system. It will then be possible to generalize

our findings to a more general mesh truncation boundary.

Let us consider the case of a sphere of radius r. Since the two princi-

pal curvatures of the sphere are identical (iq = x2 = l/r), the first order

boundary condition reduces to the simple Sommerfeld radiation condition

fs°E" PI(E) dS = jko fso (E_ + E_) dS (34)

On a spherical boundary, the second order ABC also reduces to the compar-

atively simple form:

3. 1 (VxE)2fsoE" P2(E)dS = /so k°E_t + 2jko + 2/r 1 (V. Et) 2]2jko + 2/r
dS

(35)

tl

The ABC given in (35) is identical to the boundar," condition derived in [2]
for a spherical meshtermination surfaceand leadsto a symmetric systemof
equations.

Next, weconsiderthe caseof a planar termination boundary in which case
_:1= _a= 0. The first order ABC then reducesto the Sommerfeldradiation
condition and the secondorder ABC for a planar boundary simplifies to

.](s fs [j 1 1]E.P2(E) dS = koE_+23---_o(VxE)_---(V.e,)2 d_"B6)o o 2jko

Since the planar boundary is a special case of a spherical boundary, (36)

again reduces to asymmetric system of equations.

Now we examine the situation when the mesh termination boundary is

cylindrical in shape and of radius p. The principal curvatures of the cylindri-

cal surface are then xl = 1/p and x2 = 0. Since the principal curvatures are

no longer identical, the tensors _,_ and $ do not reduce to simple scalars.

The first order ABC for a cylindrical outer boundary is given by

and the second order ABC gives by

fsoE. P (E) dS Ot 2

- J_./-o(V. E,) {V. (No" E),} dS (38)

where acl, ac2,_ and Nc are obtained by substituting *;1 = 1/p and t¢_ = 0

in the original expressions for _,_ and 7. It is seen that the first order ABC

given by (37) leads to a symmetric matrix for a cylindrical boundaryl On

the other hand, the second order ABC does not yield a symmetric matrix

for an arbitrary choice of basis functions. However, the boundary condition

outlined in (38) preserves symmetry on using linear edge-based elements for
discretization.

The above discussion enables us to conclude that the first order boundary

condition leads to a symmetric system for surfaces having arbitrary princi-

pal curvatures. However, symmetry is guaranteed for the second order ABC

only when the two principal curvatures of the mesh termination boundary

12

are identical, i.e., only when tile outer boundary is limited to a planar or
a spherical surface. Thus if we want to enclosea scatterer having arbitrary
shapewithin a conformal outer boundary, an unsymmetric system of equa-
tions will have to be solved. It should, however,be noted that the resulting
unsymmetric systemwill, in general,have a lessernumber of unknowns than
its symmetric counterpart.

3 Applications

In the previous section, we have discussed the derivation of absorbing bound-

ary conditions which can be employed on surfaces conformal to the scattering

or radiating structure. As a result, the mesh termination boundary can be

made to enclose the scattering object more snugly. Consequently for arbi-

trary targets, we achieve a substantial saving in the amount of volume to

be meshed between the ABC surface and that of the scatterer. This is par-

ticularly critical Mien the ti_-rgeT-[scy_l_ndrical in shape or a combination of

cylindrical, doubly curved and planar surfaces as is the case with any real-life

structure.

In this section, we examine the performance of these boundary conditions

when applied on conformal mesh termination surfaces.

A. Composite cube

For our first example, we compute the backscatter pattern of the half metal-

half dielectric cube geometry shown in Chapter 3. However, instead of using

a spherical surface to terminate the mesh, we employ the absorbing boundary

condition on a piecewise planar surface, i.e., a cubical box placed only 0.3,_

from the face of the scatterer. The geometry is shown in Figure 2 and

needed only 30,000 unknowns for discretization. This is in stark contrast to

the 40,000 unknown system which resulted when the geometry was enclosed

in a spherical termination boundary. The decrease in the unknown count

is even more dramatic as we go to larger scatterers. In Figure 3, we plot

the backscatter pattern in the x - z plane (E_ "c = 0 polarization) for the

metal-dielectric cube geometry given in Figure 2 and compare the computed

values with data obtained from a traditional method of moments (MoM)

code[8]. The dielectric-filled section has unit permeability and a relative

permittivity of 2 -j2. The agreement with reference data is seen to be

excellent; it can therefore be Conc|udedtha(aCcuracy of the far-field values

13

z

i!i

Figure 2: Geometry of cube (a = b = 0.5,k) consisting of a metallic section

and a dielectric section (cT = 2 -j2), where the latter is bounded by a

resistive surface having R = Zo.

has not been affected by a different mesh termination scheme. In fact, we

have obtained results of comparable accuracy with only 75% o_'tlae computing

resources than were necessary before. This observation will be made by the

reader again and again in the following pages as the full capability of these
conformal ABCs is demonstrated.

B. Inlets

In our next example, we compute the scattering from perfectly conducting

inlets. The aperture of an inlet usually has a large radar cross-section around

normal incidence: therefore, a good understanding of its scattering charac-

teristics is critical if measures need to be taken for reducing its echo-area.

An accurate computer simulation of such a geometry provides a cost-effective

and ready way of allowing the designer to experiment with complex material

fillings to achieve satisfactory results. All our validations are carried out for

empty inlets due to lack of reference data for more complicated structures.

14

10

0
-10

-2O , , , ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' '

0 30 60 90 120 150 180

Observation Angle _Oo,deg.

Figure 3: RCS pattern in the z - z plane for the composite cube shown

earlier. The solid curve is the FEMATS pattern and the black dots are MoM

data for the E_ '_c = 0 polarization. Mesh termination is piecewise planar.

15

20

15

10

wm

W

b

5

0

-5

-10

-15

0 30 60 90

Observation Angle 6., deg.

Figure 4: Backscatter pattern of a metallic rectangular inlet (1A × 1IXx 1.55)

for HH polarization. Black dots indicate computed values and the solid line

represents measured data. Mesh termination surface is spherical.

16

2O

15

10

5

I

-5

-10

-15

• i

! | | w ! i s i M i i i ! i a a i

0 30 60 90

Observation Angle _,, deg.

Figure 5: Backscatter pattern of a metallic rectangular inlet (1A × 1)_ × 1.5_)

for VV polarization. Black dots indicate computed values and the solid line

represents measured data. Mesh termination surface is spherical.

I7

Tire geometryof interest is a perfectly conducting rectangular inlet, with
dimensions1)_x 1)_x 1.51. For the plots shownin Figures4 and :5, we have

enclosed the target within a sphere of radius 1.35,_, which is only about .3:5_

from the farthest edge of the scatterer. This resulted in a system of 224,476

unknowns and converged in an average of 785 seconds per incidence angle

on the 56 processor KSRI. The computed values from our code agrees very

well with measured data for both HH and VV polarizations. As can be seen

from the above discussion, we have obtained our solution using significant

computing resources and time.

Our next step is to use the conformal mesh termination scheme formulated

in the previous section and utilized in Example A. Therefore, instead of

using a spherical mesh truncation surface, we terminate the mesh with a

rectangular box placed only 0.35,k away from the scatterer (see inset of Figure

6). The problem size reduces dramatically to 145,000 unknowns, a 35%

reduction over the spherical mesh termination scheme. The convergence

time for each excitation vector is about 220 seconds, less than 4 minutes,

when run on all 56 processors of the KSR1. The computed values are again

compared with measured data for both polarizations in Figures 6 and 7; the

agreement is excellent, albeit a bit worse than the spherical case. However,

this fact is overshadowed by the fact that we have reduced the problem size

by more than a third and computing time by about a fourth.

We then considered the problem of scattering from a perfectly conducting

cylindrical inlet. Even though integral equation codes are more efficient for

such bodies of revolution, our primary concern in this test was to examine

the performance of the conformal absorbing boundary conditions that we

derived earlier. The target is a perfectly conducting cylindrical inlet hav-

ing a diameter of 1.25_ and a height of 1.875_. We first used a rectangular

outer boundary, placed .45,_ from the farthest edge of the target, to enclose

the scatterer. The radar cross-section was then computed for a _b-polarized

incident wave in the Vz-plane and compared with measured data. The agree-

ment was found to be quite good for all lobes except the third. We expect

the results to improve on moving the outer boundary farther away.

Next, we used a truly conformM termination scheme by using a cylindrical

surface for mesh truncation. It should be noted that this is the first instance

of a non-spherical surface (i.e., a surface having different principal curvatures)

being applied to terminate a finite element mesh for solving open problems.

The cylindrical outer boundary was placed about 0.45,_ from the target and

18

"o

Q
m

,<

t_

20

15

10

5

0

-$

-10

-15

• D

0 30 60 90

Observation Angle _o., deg.

Figure 6: Backscatter pattern of a metallic rectangular inlet (1A x 1A x 1.SA)

for HH polarization. Black dots indicate computed values and the solid line

represents measured data. Mesh termination surface is piecewise planar.

RCS computations were carried out for a $ polarized incident wave and com-

pared with measured data (Figure 8). The savings in computational cost for

the cylindrical termination scheme as opposed to the rectangular mesh trun-

cation boundary is quite impressive. The cylindrical mesh termination has

only 144,392 unknowns compared to the 191,788 unknowns for a rectangu-

lar truncation scheme. A spherical mesh termination would have swelled to

about 265,000 unknowns, sampling density and outer boundary distance re-

maining the same. Thus we have reduced the problem size by about 45% and

computation time by a similar, if not greater, amount by using a conformal

mesh termination scheme. The savings in computational resources is quite

significant even when we compare the rectangular and cylindrical termina-

tion schemes - a 25% reduction in problem size and a similar decrease in

computation time. In Figure 9, we plot the backscatter pattern for the same

cylindrical inlet in which the incident waye _is 0 polarized. The agreement is

19

2O

10-

s

-5

-10

-15

0 30 60 90

Observa[ion Angle rp., deg.

Figure 7: Backscatter pattern of a metallic rectangular inlet (1A × 1A x 1.5A)

for VV polarization. Black dots indicate computed values and the solid line

represents measured data. Mesh termination surface is piecewise planar.

seen to be decent for the entire range of incident angles.

C. Perfectly conducting plate

The motivation for testing the FEMATS code on the perfectly conducting

plate was two-fold. It is usually very difficult to model the scattering from

the edges of the plate even using integral equation methods. Therefore, we

wanted to carry out some tests to see how the code would behave at edge-on

incidence. Secondly, we wanted to examine the performance of termination

boundaries of esoteric shapes. The first choice was to enclose the plate in

a rectangular box. The second choice was to use a box with half cylinders

attached to the faces normal to the plane of the plate - the reasoning be-

ing that since the edge of the plate behaves like a line source and scatters

cylindrical waves, a cylindrical mesh termination was most suitable for wave

absorption. It should be noted that both mesh termination schemes require

approximately the same number of unknowns; the superiority of one over the

2O

-10

E
=_ -15

,u,,d

= -20

I
o -25

_ -30

= -35

-40

Z

0 30 60

Observation Angle eo,deg.

90

Figure 8: Backscatter pattern of a perfectly conducting cylindrical inlet

(diameter=l.25A, height=l.875A) for HH polarization. Black dots indicate

computed values and the solid line represents measured data. Mesh termi-

nation surface is a circular cylinder.

21

-10

-2O

-5O

-4O
| i i ! | i I i . | s |

0 30 +- 60 90

Observation An_e O,deg.

Figure 9: Backscatter pattern of a perfectly conducting cylindrical inlet

(diameter=l.25A, height=1.875A) for HH polarization. Black dots indicate

computed values and the solid line represents measured data. Mesh termi-

nation surface is a circular cylinder.

22

other will thus be decidedonly on the basisof compuled backscatter values.
Our test caseis a 3.5A × 2A perfectly"conducting rectangular plate. In

Figure 10,we plot the backscatterpattern for ttle 00 polarization in the zz

plane, i.e., over the long side of the plate. The computed values compare very

,.,,,i

II w

,,<

5O

2O

10

0

-10

-2O

-5O

i III

0 30 60 90

Observation An_e qo, deg.

Figure 10: Backscatter pattern (coo) of a 3.5A x 2A perfectly conducting

plate in the xz plane. The white dots indicate box termination; the black

dots represent a combined bo_c-cylinder termination.

well with reference data; however, the code does not pick up the sharp null

at 0o - 45 o and the two mesh termination schemes perform as well, although

a slight improvement is noticeable for the box-cylinder termination.

Next, we plot the backscatter pattern of the same geometry for the _bq5

polarization over the long side of the plate in Figure 11. Again, the agreement

with reference data is quite good. However, the backscatter echo-area at

edge-on incidence is not calculated accurately.

In the next figure, we compute the RCS of the conducting plate in the yz

plane, i.e., over its short side, for the qiq_polarization. The backscatter echo-

area for edge-on incidence is picked up very well for a rectangular-cylindrical

23

20

10

0
N

-10

0

Z

30 60

Observation Angle qo. deg.

9O

Figure 11: Backscatter pattern (cr¢¢) of a 3.5A x 2A perfectly conducting

plate in the xz plane. The white dots indicate box termination; the black

dots represent a combined box-cylinder termination.

24

3O

m

,<

t_

2O

10

0

-10

-2O

-3O

@ o Ooooo
0

0

0
0

Z

, , , . , ! , , , , , i .
30 60

Observation Angle _0o, deg.

m ! | !

0 9O

Figure 19: Backscatter pattern (e**) of a 3.5A × 2A perfectly conducting

plate in the Vz plane. The white dots indicate box termination; the black

dots represent a combined box-cylinder termination.

25

termination whereasa rectangular truncation scheme_i\'e_,oomph,rely in-

correct results. These two schemes have approximately the same storage

requirement; in fact, the box-cylinder combination yields a slight13- smaller

system of equation. This example truly illustrates the power of a conformal

truncation scheme composed of simple shapes: not only are the resuhs far

more accurate but even the storage requirement is slightly less.

In the last experiment, we compute the backscatter values of the conduct-

ing plate for a conical _ = 80 o cut (Figure 13). This problem is extremely

difficult since the ABCs are usually the least accurate at edge-on. Even

then, the comparison with reference data is decent for the box-cylinder com-

bination and not so accurate for the rectangular truncation scheme. This is

especially noticeable at ¢ = 0 ° where the rectangular termination boundary
yields completely inaccurate results.

2O

Z

-: 0
I

b

-10

-20

0

• o_

o

30 60 90

Observation Angle _Oo,deg.

Figure 13: Backscatter pattern (cr4,¢) of a 3.5A × 2A perfectly conducting

plate for a conical O = 800 cut. The white dots indicate box termination; the

black dots represent a combined box-cylinder termination.

In all the above simulations, the boundary was terminated at 0.35A from

26

the fiat faceof the plate and 0.5,\ from the edges of the plate.

D. Glass plat_

The next example presents the computation of radar cross-section of a 1,\ x

1.75tx.1251 glass plate having a relative permittivity of 5.$89 -j 0.0551. The

target was enclosed in a rectangular outer boundary placed only 0.3,\ from

the edge of the plate. This resulted in a system of about 146,000 unknowns

which required an average of 8,000 iterations to converge per incidence angle

for a diagonally preconditioned biconjugate gradient solver. The relatively

slow convergence is characteristic of a high contrast, pure dielectric scatterer.

It should be noted that a metal-backed dielectric target converges to the

same tolerance in less than half the number of iterations required for a pure

dielectric one. In Figure 14, we plot the backscatter pattern of the glass plate

for the VV polarization on the z-x plane and compare it with results obtained

from a method of moments code[9]. The agreement is decent considering that

the method of moments code was run only with 4 samples per wavelength.

4 Conclusion

In the previous section, we have computed the scattering from geometries of

various shapes and material compositions to verify the performance of the

conformal boundary conditions that we proposed in the second section. On

the basis of the examples shown, it can be safely concluded that the con-

formal boundary conditions perform quite well in comparison to boundary

conditions employed on spherical mesh terminations. This fact, coupled with

the enormous savings in computer resources in the form of storage and so-

lution time, highlights the viability of the FEMATS method in solving large

three dimensional problems.

In the course of this research, we have also noticed that it is best to keep

the shape of the mesh truncation boundary to be as simple as possible. This

implies constructing the mesh truncation boundary to be either a sphere or

a cylinder or piecewise planar or a combination of these simple shapes. The

power of the combined rectangular and cylindrical termination scheme was

aptly demonstrated in the case of the perfectly conducting plate where a

piecewise planar boundary failed to account for the edge effects but a box-

cylinder termination gave significantly better results.

27

5 References

1. A.F. Peterson, " " oAbsorbing boundary con,titions f_,r the x,-,-tt)r wave eq_la-

tion", Microwave and Opt. Tech. Letters. vol. 1. pp. 62-64. April 19,':;8.

2. J.P. Webb and V.N. Kanellopoulos, "'Absorbing boundary conditions fur

finite element solution of the vector wave equation". 3licrou'are and Opt.
Tech. Letters, vol. '),- no. 10, pp. 370-372. October 1%9.'_

3. C.T. Tai, Generalized vector and dyadic analysis, IEEE Press, New York,
1992.

4. D.S. Jones, "An improved surface radiation condition", IMA Jour..4ppl.
Math., vol. 48, pp. 163:193, 1992.

5. C.H. Wilcox, "An expansion theorem for electromagnetic fields", Comm.

Pure AppI. Math., vol. 9, pp. 115-134, May 1956.

6. S.M, Rytov, "Computation of the skin effect by the perturbation method",

J. Ezp. Theor. Phys., vol. 10, pp. 180, 1940. Translation by V. Kerdeme-
lidis and K.M. Mitzner.

7. A. Chatterjee, J.M. Jin and J.L. Volakis,"Application of edge-based finite

elements and ABCs to 3-D scattering", IEEE Trans. Antennas Propagat.,

vol. 41, pp. 221-226, February 1993.

8. Courtesy of Northrop Corp., B2 Division, Pico Rivera, CA.

9. H.T.G. Wang, personal communication.

28

Z

2O

X

.5 e!

U_..L[0.25

r-Y

(Yoo Backscatter RCS in the xz plane (¢=0)

la

10 •

5 • •

0 •

-5 •

-2O
0 30 60 90

Observation Angle O (deg)

Figure 14: RCS pattern of a glass plate (er=5.889 -j.0551; 1_ x 1.75_ x .25)_

at 5.9GHz) for VV polarization on the z-x plane. The solid line denotes

moment method data [9] and the black dots indicate computed values.

29

Parallelization of FEMATS
for the Intel iPSC/860

John Nguyen

Introduction

Code for distributed-memory multiprocessors differs from that for conventional

sequential processors in several respects. First, taking advantage of the additional pro-

cessors require that the computations in a program be distributed among the processors.

Since most of the work in scientific programs occurs in DO loops, a large amount of paral-

lelism can be achieved by allowing all processors to execute each DO loop. Second, since

memory is no longer a contiguous chunk, supporting a distributed-memory hierarchy

requires splitting of data into sections for each memory module. Thus the conversion of

sequential code to parallel code for the Intel iPSC/860 can be specified as two primary

tasks:

1. paraUelization of DO loops: Parallelism is introduced in this phase by allowing

each processor to execute a portion of each DO loop.

2. distribution of arrays among processors: Since the amount of memory on each

processing node is limited, each array is divided into smaller units that reside on each

node. This also allows array accesses from each processor to be serviced by different

nodes and thereby reduces contention for resources of any single node.

On a cache-only-memory machine such as a KSR, only the first step is necessary since

the hardware cache system automatically takes care of the distribution of data among

processors. Since the distribution of arrays is the more involved task, this allows one

to port a piece of code to the KSR much more quickly than a purely message-passing

machine such as the iPSC/860. However, the increased control of data distribution

and communication on the iPSC/860 can translate into improved performance for some

applications.

The following sections present more detail on the two parallelization tasks as well as

some performance figures for the FEM-ATS code.

Parallelization of loops

A DO loop can be completely paraUelized when there are no dependences between

iterations of the loop. In other words, when each iteration of a loop can be executed

independently, then a DO loop can be executed on several processors merely by letting

each processor execute a portion of the iterations. For: example, a 1000-iteration loop

can be paraUelized on a 10-processor machine with processor 1 executing iterations 1

31

through 100, processor 2 executing iterations 101 through 200, etc. In the FEM-ATS code,

this approach can be used to parallelize the linear solver as well as the excitation vector

generation. However, the main loop in the matrix assembly phase contains a dependence

between loop iterations, and thus requires additional modifications.

The primary loop in the matrix assembly phase involves the computation of several

intermediate values which are then used to update the matrix. Although the intermediate

value computation can be executed independently in each iterations, the matrix update

can involve potential conflicts if two processors try to update the same matrix element

simultaneously. The parallelization of this loop thus requires an additional mechanism

for locking out other processors while updating a matrix element. On the iPSC/860,

this is done by allowing each processor to lock a row of the matrix while performing an

update. Since the locking of each row is maintained by the processor whose memory

holds the row, processors perform row locking and unlocking by sending messages to

the appropriate owner of the row.

Distribution of arrays

Whereas the parallelization of loops enables programs to execute faster on multipro-

cessors, the distribution of arrays must be done for the FEM-ATS program to execute at

all. As an example, consider running the FEM-ATS code with 100,000 unknowns. Since

the average bandwith of the coefficient matrix is approximately 15, the matrix contains

around 1.5 million elements. Each element is a 16-byte complex number which implies

that the matrix requires 24 million bytes of storage. Since each iPSC/860 node holds 8

million bytes, the matrix must be distributed before the program can be run at all.

Arrays are distributed in the FEM-ATS code by partitioning one dimension among

processors. Thus for a 1000 element array, processor 1 holds the first 100 elements,

processor 2 holds the second 100 elements, etc. The straightforward method for accessing

this distributed array involves the translation of array references into subroutine calls.

Thus an expression x--a(i) is translated into the call ¢_J. fel;cha(i,x). The subroutine

,¢ha sends a message to the processor that holds element a(i), which in turn sends a

reply message with the value of a(i). Although this scheme requires the implementation

of a new subroutine for each distributed array and the replacement of each array access

with a subroutine calls, the process is easy and mechanical. However, such a scheme does

32

not resultin very good performance, as explained below.

On most multiprocessors, the overhead for sending a message is typically much

higher than that of sending a single byte. The cost for sending 10 or even I00 bytes

is usually not much higher than that of sending I byte. Thus an important strategy in

improving performance involves the "bundling" of messages. Rather than sending I00

messages to retrieve I00 bytes, itis much more efficientto send I message to retrieve

I00 bytes, ifpossible. The above simple scheme for accessing distributed arrays directly

contradicts thisstrategy.For parts of the code that are not lime-criticalsuch as the matrix

assembly or exaltation vector generation, the simple scheme isadequate. However, since

the program spends over 90% of itslime in the solver, that part must use a betterscheme

to access distributed arrays.

The primary operation in the solver that generates communication involves the

multiplication of a sparse matrix by a vector. The vector is distributed, as are the rows

of the matrix. Since the matrix-vector multiplication involves performing a dot-product

of each row with the vector, each processor must obtain the values for the entire vector

from other processors. No communication isrequired for the matrix since each processor

already holds the relevant rows of the matrix in itsmemory. Since each processor may not

be able to hold the entire vector in itsmemory, the dot-product operation must proceed

in several phases.

Each processor p begins the matrix-vector multiply by sending itsportion of the vector

to every other processor, then performs the following for each processor p':Processor p

reads the portion of the vector owned by m',and updates the partial dot product for each

row by adding the product of each appropriate matrix element with elements of the partial

vector. After reading and updating values for allprocessors p',the dot product operation

is complete. Unfortunately, each phase requires a pass over all the sparse-malrix rows

owned by the processor in order to find elements that can be multiplied to the current

partial vector. In the future, itmay be possible to sort each row of the matrix to allow the

phases to pass over the rows in order.

Because of the relatively small amount of memory on each iPSC/860 node, each

processor can at the moment run the FEM-ATS code on up to 10,000 edges. Thus a run

on 40,000 edges would require 4 processors and one on 300,000 edges would require 30

processors. If one were willing to sacrifice some execution speed, this number can be

33

increased by 50%by eliminating somestorage that is currently used to reduce the amount

of communication between processors.

Results

Results on a problem with 31,000 edges show that the problem scales reasonably for

small numbers of processors. However, as the number of processors increase, the problem

becomes too small to benefit much from the increase since each processor spends a higher

percentage of time on communication and bookkeeping than on true computation. The

results are given in number of seconds per iteration as follows:

Number ofprocessors iPSC/860 KSR

4 .393 .197

8 .290 .104

16 .243 .059

32 .238

34

MANUAL OF THE FEM-ATS CODE USED FOR

COMPUTING THREE-DIMENSIONAL SCATTERING

Arindam Chatterjee, John L. Volakis

and Mike Nurnberger

Radiation Laboratory

Department of Electrical Engineering

and Computer Science

University of Michigan

Ann Arbor MI 48109-2122

35

1 Introduction

The FEM-ATS program incorporates first order edge-based finite elements

and vector absorbing boundary conditions into the scattered field formula-

tion for computing the scattering from three-dimensional geometries. The

code has been validated extensively for a large class of geometries containing

inhomogeneities and satisfying transition conditions(see [1] for formulation).

The FEMATS code has been optimized to run on the Cray YMP and par-

allelized to run on the Kendall Square Research architecture and the Intel

iPSC/860.

2 Installation

FEMATS is designed to run on multiple computing platforms to best utilize

various machine capabilities. Because of the large amount of time required

to run FEMATS, it has been written to run on a supercomputer, while

I-DEAS and most of the preprocessing programs only need to be run on
a unix workstation. Hence there are two sets of source code included on

the tape, along with two installation procedures. Also included is a small

sample session, starting with the I-DEAS universal file, and ending with the

FEMATS output files.

Note: While FEMATS was designed to run on a supercomputer, it may

also run on the same workstation that performs the preprocessing, or any
other machine.

Installation Instructions

1. Place the distribution tape in tape drive. If the drive is not the default

system drive, you will need to find out what device it is.

2. Retrieve the files from the tape to the appropriate directory. If, for

example, you wanted to install FEMATS in your homedir, you would

say:

cd homedir

tar xv *

This will place three files in your home directory:

femats.reg.tar.Z

femats.mpp.tar.Z

femats.ex.tar.Z

femats.reg.tar.Z is a compressed tar file containing the source code for

the workstation-based portion of FEMATS.

femats.mpp.tar.Z is a compressed tar file containing the source code

for the supercomputer-based portion of FEMATS.

36

femats.ex.tar.Z is a compressedtar file containing an example run of
FEMATS, and may be placedon either system.

. ftp the supercomputer portion of FEMATS to the supercomputer,

putting it in the appropriate directory. (If you are going to run both

sections of code on the same machine, don't do this...)

. If femats.reg.tar.Z is not in the directory where you want to install

FEMATS, then put it there. Note: When the files are untared, a

directory named femats will be created, and the appropriate files placed

in it.

5. Uncompress femats.reg.tar.Z: type

uncompress femats.reg.tar.Z

6. Untar femats.reg.tar: type

tar xvf femats.reg.tar

7. Change directories to femats, and type install.reg. This will compile

the preprocessors, and place them in the femats directory.

8. Follow the same steps for the supercomputer, starting with step 4, and

changing femats.reg to femats.mpp in all cases.

. If any problems occur, don't hesitate to look in the scripts--they are

quite simple, and there may be some machine dependencies that were

missed...

3 Data Generation

The computation of scattering from a specific geometry with FEMATS is a

multi-stage process, as is shown in Figure 1. Once the geometric parameters

of the target are known, a solid model is constructed in the Solid Modeling

family of SDRC I-DEAS, a commercial CAD/CAE/CAM software package.

The solid model is then exported to the Finite Element Modeling and Analy-

sis family of I-DEAS, and the nodes and elements necessary for the scattering

analysis are generated. This data is written to a output file, called a Univer-

sal file, and operated on by several preprocessors, generating the necessary

input files for FEMATS.

The process of object modeling and mesh generation is an art, not a

science. Hence, it cannot be taught, or demonstrated--it must be learned

through experience. Therefore, this section is not by any means an I-DEAS

FE mesh generation manual. In fact, it assumes (and requires) a working

knowledge of, and familiarity with, the I-DEAS Solid Modeling and Finite

Element Analysis families.

37

Geometry
I-DEASSolid Modeling

Coutpu'>- 'I FEMATS

._ I-DEAS IMesh generation

I Preprocessor I<

C universalfile

I

Figure 1: Stages involved in scattering computation from arbitrary 3D ge-
ometries

38

3.1 Solid Modeling

Once the geometry of the target is specified, it is constructed using the

I-DEAS Solid Modeling Family of tasks. There is a tendency to downplay

the importance of the solid model, and treat it only as a stepping stone

towards a final product. However, the solid model is the framework for the

finite element mesh, and as such, has a direct bearing on the quality of the

mesh. Because of this, and because mesh generation is by no means a science,

it is wise to keep the problem as simple as possible. This helps to ensure a

better mesh, and a more accurate answer.

In general, the object or body being meshed will contain various planes

of symmetry. It is nearly always advisable to take advantage of whatever

symmetry is available, as doing so will greatly reduce the amount of time

necessary to generate the mesh. In fact, the geometry may require such

subdivision to make meshing possible. For more details about the creation

of the solid model for FEMATS, please see the I-DEAS Solid Modeling User's

Guide.

Note: When creating the Solid Model, FEMATS requires the dimensions

to be in wavelengths.

3.2 Mesh Generation

I-DEAS generates the finite element mesh by creating mesh areas on surfaces,

and then combining these mesh areas into mesh volumes. Each mesh volume

is then filled with the chosen element type. When the solid model is imported

into the Finite Element Modeling and Analysis Family of I-DEAS, these

mesh areas and mesh volumes are automatically created. Generally, however,

I-DEAS does not choose the correct element order (linear vs. parabolic), and

the mesh volumes must be modified to reflect the correct element order. Even

if the guidelines mentioned above are followed, the mesh areas can become

quite complex. It is then prudent to break the mesh volume into smaller,

more manageable mesh volumes. For more details on mesh creation, please

see the I-DEAS Finite Element Modeling User's Guide.

3.3 Modifying material property labels

After all the mesh volumes have been created, the material property labels

of each are modified according to the type of material each mesh volume

contains. The elements in the volume between the target and the outer

boundary usually has a material property label of 1. If the target contains a

dielectric-filled volume, the material property labels of the elements in that

volume should be 2 or any integer greater than 1. In this way, the code can

accommodate for upto 9 different material fillings. If the geometry should

require more than 9 different materials, the vectors eps and mu should be

increased to the required value.

Please see Section 6.1 for more details.

39

3.4 Type of meshing

The global element length is now specified (usually .075-.085 units)_ finer

meshing can be done in regions with rapidly changing fields or large curva-

tures by specifying the local element length or curvature-based size param-

eters. The geometry is then free-meshed using the I-DEAS Mesh Creation

Module. It is essential to use free meshing and not mapped meshing since the

latter maps ttle mesh volume into a rectangular box and back, thus distorting

the elements. No such distortion occurs in space when an electromagnetic

wave travels through it; a mapped mesh, therefore, alters the physics of the

problem and leads to inaccuracies in the final result.

Please see Section 6.1 for more details.

3.5 Grouping nodes

The finite element method essentially solves a boundary value problem and

thus it is crucial to identify surfaces or surface edges on which the boundary

conditions are to be imposed. In the current version of FEMATS, this is

carried out by grouping the nodes which lie on the surfaces on which the

boundary conditions need to be imposed. If the surface nodes coincides with

a perfect electric conductor, the group is labeled C, if the nodes lie on a

resistive sheet, the group is labeled R and so on. Detailed information about

grouping nodes is given in the Appendix.

Care must be taken while grouping surfaces that intersect since edges

connecting two such nodes may not lie on the surface at all. For example,

three surfaces intersect at the corner of a cube. If the nodes on each of these

surfaces are not grouped separately, the processing program will give rise to

'surface' edges which actually do not lie on the surface. Another anomaly

may arise when the surfaces are separated by a single element. This is due to

the fact that the processing program considers an edge to lie on the surface

if two nodes in the group connect to form a edge. As a rule of thumb, it is

best to group each surface separately. They may be grouped together only

when the user is certain that spurious surface edges will not be created by

the processing program.

Please see Section 6.1 for more details.

3.6 Universal file

The mesh information obtained from I-DEAS is now written to an ASCII

file called the Universal file. The Universal file has a specific format for

identifying the nodes, elements and groups which can be obtained from the

I-DEAS User's guide.

It should be noted that only the FE entities and Groups need to be

included into the Universal file. Also, while this discussion has dealt primarily

with I-DEAS, any mesh generator that writes a Universal file will work just

fine...

4O

4 Preprocessing

The necessary preprocessing is performed by a number of smaller programs

that operate on the Universal file generated by I-DEAS. Because FEMATS

is designed to be run on a supercomputer, and I-DEAS and the preprocessors

generally are run on a workstation of some sort, some of the preprocessing

is performed on the workstation, and some of it on the supercomputer. In

both cases, a script runs the necessary preprocessors, and presents the user

with the necessary FEMATS input data files. (Note that while FEMATS

has been designed to run on a supercomputer, it can peacefully co-exist with

the preprocessors, etc. on the workstation. However, if FEMATS is to be

run on the workstation, certain variable types must be changed to reflect the

decreased precision inherent to most workstations.) To run the script that

runs the preprocessors, type

femats.reg file.unv

where file.unv is the name of the universal file containing the mesh infor-

mation. The femats.reg script extracts the necessary information from each

preprocessor, and terminates with instructions informing the user which files

need to be transfered to the supercomputer for further preprocessing.

After the appropriate files have been transfered to the supercomputer, a

script is also run there to finish the preprocessing. To run this script, type

femats .mpp file

where file is the name of the original universal file, without the ending (.unv).

This script will present the user with the necessary input files for FEMATS,

along with a list of numbers required for input by FEMATS.

5 Running FEMATS

Enter 1 for data to be entered ±nteractively; 2 for

data to be read from a file

It is faster to get data read from a file; however, for the first-time user,

interactive input provides more insight.

Number of edges

Input the no. of edges obtained from prec.

No.\ of elements with surface edges on l)pec 2)r-card 3) ibc

4)dielectric 5)outer boundary 6)outer surface of scatterer

Enter the no. of elements with surface edges on the various materials as

obtained from proc.f.

41

If inhomogeneous, enter 0

Enter 0 as long as there are two or more material property labels (see Ap-

pendix) present in the geometry. This holds for r-cards ms well, since the top

and bottom elements on a r-card have different material property labels.

Number of distinct dielectric materials

Enter the no. of distinct material property labels. Note material property

label 1 is free, space by default. If the mesh designates material property

label 1 to anything other than free-space, the program won't run.

constitutive relative parameters for region ,i

Input the epsilon and mu of the dielectric in that order. For a r-card whose

top and bottom surface is free-space, enter er and/tr of free space, i.e., unity.

If resistive card inside geometry enter I

Number of different r-cards

Input the no.of r-cards having different resistivity values for the geometry.

Input: a) Material property label on top surface of card

b) Material property label on bottom surface of card

c) Normalized resistivity

The mesh must be constructed in such a way that the material property

labels on the top and bottom surfaces of the R-card are different.

If impedance sheet inside geometry enter 1

Input: a) Material property label on top surface of impedance sheet

b) Normalized impedance

Most of the data entered till now has been related to the geometry. The

data entered from this point will be related to the iteration count, number

of look angles, etc.

Tolerance, maximum iterations

The tolerance of the residual is usually kept between .001 and .0005. This

is .1%-.05% of the solution norm. Max. no. of iterations is determined by

trial and error. A typical value for PEC targets is N/100 for N > 25000

and N/120 for N > 75000. The largest problem run to date contained 93000

unknowns and converged, on the average, in 800 iterations. The code uses

diagonally preconditioned biconjugate gradient method to solve the system

so the residual error will jump to abnormal values quite frequently.

42

1) Bistatic 2) Backscatter

Enter 1 for bistatic pattern, 2 for backscatter

All angle values should be integers

Bistatic

Angle of incidence: theta,phi

Fix l)phi 2)theta to specified angle

Angle of observation: start,end,increment

Polarisation angle: alpha=O(H_z=O); alpha=90(E- z=O)

In order to fix ¢ to 90 ° (say), the input should look like

1 90

To fix 0 to 90 ° (say), the input should be

2 90

Backscatter

Fix 1)phi 2)theta to specified angle

Angle of incidence: start,end,increment

Polarisation angle: alpha=O(H_z=O); alpha=90(E_z=O)

Enter I for spherical outer boundary; 2 otherwise

The code works for a spherical termination or terminations having flat outer

faces. The sphere should be centered at the origin.

6

6.1

Appendix

Stipulations for mesh generation

the region surrounding the scatterer should have a material property

number label of 1, i.e., the least possible value.

for a surface draped by a resistive card, it is essential to differentiate the

top surface from the bottom surfacer The only way the program can

discern this from the available data is by checking the material property

number labels of the elements on the top and bottom surfaces. The

material property number label of the top surface must be different

from that of the bottom surface.

when meshing a mesh-volume filled with a dielectric having a cer-

tain permeability and permittivity, the material property label number

should be different from that of surrounding space.

when grouping surface nodes, the group labels should start with a

43

- C if the nodes lie on a perfect electrical conductor

- R if the nodes lie on a resistive card

- D if the nodes lie on a dielectric

- A if the nodes lie in free space (i.e., on the mesh termination

boundary)

- O if the nodes lie on the outer surface of the scatterer

The above order (C,R,D,A,O) must be maintained when grouping nodes.

• Nodes on the interfaces of materials having different constitutive pa-

rameters must be grouped.

6.2 Code Theory of Operation

6.2.1 proc.f

The program converts the mesh information stored in the Universal file into

a more usable form for analysis by FEMATS. It first reads in the nodal co-

ordinates, nodal connectivity and the grouped nodes from the Universal file.

Since FEMATS uses edge-based shape functions, the edges and the nodes

connecting them need to be identified. Since each edge is shared by more

than one element, care must be taken so that the same edge is not counted

more than once. A comparison of the connecting nodes must therefore be

done for identifying old edges and creating new ones. This can be a compu-

tationally intensive task if a brute force comparison is carried out, especially

if the problem size is very large. We need to use an algorithm that would

scale at most linearly with the number of nodes or edges, i.e. the number

of comparisons required for identifying old or new edges should be an O(N)

process.

In order to realize this requirement, we use the ITPACK scheme [2] for

storing the node connectivity information. The ITPACK scheme is attractive

since the number of comparisons required while augmenting the connectivity

matrix depends only on the locality of the corresponding node and not on

the total number of nodes or edges. In the ITPACK storage scheme, the no.

of rows of the connectivity matrix is equal to the no. of nodes and the no. of

columns equals the maximum no. of nodes connected to a particular node.

Since this leads to a wastage of space when the no. of connecting nodes varies

widely, we use a modified ITPACK format where the no. of columns of the

connectivity matrix equals the average no. of nodes connected to a particular

node and the no. of rows is slightly more than the total no. of nodes. The

storage requirement for such a matrix is usually 1.1Nn x 16 integers, where

Nn equals the no. of nodes.

After generating the edges, the code uses the same storage scheme for

finding the surface edges and elements from the grouped nodes. The surface

edges are then sorted in ascending order by element number for the various

44

materials and boundarieson which tile 5" lie. All components of the code are

extremely fast with the slowest being the sorting routine.

The output files from proc.f are

• enode

contains co-ordinates of all tile nodes in the geometry.

• eglob

contains the edges making up each element.

• edge

contains the nodes making up each edge.

esurfed

contains the element number, node numbers nad corresponding edge

numbers of the on-surface edges.

otpt

contains the number of edges in the geometry and the number of ele-

ments with surface edges on the PEC, R:card, dielectric, outer bound-

ary and outer surface of scatterer.

Required storage is about 18N real Words, where N is the number of un-

knowns and is equal to the number of edges making up the mesh.

6.2.2 count.f

The program asks for the number of edges in the geometry and generates

cntr as the output, cntr contains the no. of non-zero entries per row for the

finite element system. The number usually varies from 9 to 31 for a typical

system. Required storage is about 13N real Words, where N again denotes

the number of unknowns.

6.2.3 fem.f

This is the main program (FEMATS) which computes backscatter or bistatic

patterns after reading in the mesh files created by proc.f and count.f. Pa-

rameters like number of edges, number of surface elements, type of pattern,

etc. can be read in interactively or from a file. The backscatter or bistatic

pattern is returned in a separate file. If the code fails to run for some reason,

the error is returned in the error file. The flow of control of FEMATS is given

in Figure 2. The formulation for the methodology is given in [2].

Input files: The input files containing the mesh information and parame-

ters for running the probelm are read in, usually in binary format. The ASCII

format is quite slow for most machines and prohibitively slow on the KSR1.

A small program usually converts the mesh files from ASCII to binary.

Processing data: Some preliminary processing is done to find the radius

of the outer boundary if a spherical mesh termination scheme is used.

45

Input files

Processing data

Finite element

matrix
generation/assembly

No

, es
Excitation vector

generation

es

I Compute far-field I

Stop]

Flowchart of finite element code

Figure 2: Flowchart for FEMATS

46

FE matrix generation�assembly: The finite element matrix generation is

done on an element-by-element basis. The elemental matrix is first computed

and then assembled into the global sparse matrix. The assembly is simplified

since the number of non-zero entries per row of the matrix is known apriori

and the order of the entries is not important. The non-zero entries of the

final sparse matrix are stored in a long complex vector, the corresponding

column nos. are stored in an integer vector and the location of the first

non-zero entry for each row is stored in another integer vector. This is the

well-known Compressed Sparse Row (CSR) format used in public domain

software packages like SLAP and SPARSPAK. The coefficient matrix is not

a function of the angle of incidence.

The code also uses a simple diagonal preconditioner for speeding up the

iterative process. Other complicated preconditioning strategies are also avail-

able. However, except the block ILU preconditioner, none of them compare

favourably with the point diagonal preconditioner in terms of solution time.

Excitation vector generation: The excitation vector generation is not very

computer intensive since the vectors are always quite sparse. It is a function

of the angle of incidence.

BCG iteration: The biconjugate gradient (BCG) algorithm is used with

preconditioning to solve the sparse, symmetric system of linear equations.

Each iteration of the algorithm involves 1 sparse-matrix vector product, 3

vector updates and 3 inner products. The norm of the residual vector is

computed after every iteration to check for convergence. Reliable results

have been obtained by setting the convergence criterion to be

Ilrkll < .001 * Ilbll

where r k is the residual vector after the kth iteration and b is the excitation

vector.

Far-field evaluation: The far-field is evaluated by integrating the near-

zone fields over a closed surface using the Stratton-Chu integral equation.

The surface is usually taken to be very close to or on the body itself to

achieve maximum accuracy.

Storage required for the code is at present 36N complex Words, where

N is the number of unknowns. The storage can be cut by 40% if only the

symmetric upper triangular part of the object matrix is stored; the code,

however, slows down significantly.

6.2.4 Subroutine functions in fem.f

basis.f
Calculates the two constant vectors of the bases for the finite element

discretization as well as the element volume.

calc.f

Computes the volume integral for the finite element discretization

analytically.

47

ccross.f

Takes the cross product of two complex vectors.

cdot.f
Takes the inner product of two vectors.

comput.f
Calculates the basis functions at the mid-point of each edge.

cross.f

Takes the cross product of two realvectors.

crux.f
Computes the element matrix from the volume integral.

cruxd.f
Imposes the boundary condition for dielectric volumes and generates the

corresponding excitation vector.

dist.f
Calculates the distance between two points in space.

dot.f
Computes the dot product of two real vectors.

exchg.f
Exchanges one variable with another.

fl.f
Carries out the volume integration of Wi • Wj analytically.

finc.f

Computes the volume integral for a dielectric volume to be used in the

excitation vector.

fu.f
Carries out the surface integration for the absorbing boundary condition

employed on the mesh termination boundary.

incc.f
Imposes the boundary condition for a perfect electric conductor. If iter is O,

the excitation vector is computed, otherwise changes are made to the

element matrix.

incd.f

Imposes the boundary condition for a dielectric surface.

incr.f
Imposes the boundary condition for a resistive card.

48

mult.f

Carries out the sparse matrix-vector multiplication.

norm2d.f

Computes the element normal for a 2D geometry.

norma.f

Computes the element normal for a surface element.

ord.f

Identifies the global nodes and edges in the local context.

sort.f

Sorts the edges in a element according to a specific numbering scheme.

surfint.f

Imposes the absorbing boundary condition on the mesh termination

boundary.

value.f

Computes the far-field using the Stratton-Chu integral equation.

volume.f

Calculates the element volume.

6.2.5 References

° A. Chatterjee, J.M. Jin and J.L. Volakis, "Application of edge-based

finite elements and ABCs to 3-D scattering," IEEE Trans. Antennas

Pvopagat., vol. 41, pp. 221-26, February 1993.

2. D.R. Kincaid and T.C. Oppe, "ITPACK on supercomputers,"

Numerical Methods, Lecture Notes in Mathematics, vol. 1005, pp.

151-61, Springer, Berlin, 1982.

6.3 Example FEMATS Run

A perfectly conducting cylindrical inlet was run on the KSRI machine. The

geometry was enclosed by a rectangular outer boundary and the backscatter

pattern was sought for 0 = 00-90 ° and c_ = 90 °. The problem had 213,832

unknowns and a diagonally preconditioned BCG solver was used.

Input file:

49

213832

13656 0 0 10704 7704

0

2

(1.,0.) (1.,0.)

0

eg
.001 10000

2

I 90

0905

90

2

Output file:

Number of threads = 56

Backscatter pattern will be computed

Polarisation angle- 90

Incident angle from 0 to 90

in steps of 5

Sweep through theta ; phi- 90

**

Problem size

Number of nodes - 32453

Number of elements - 176048

Number of edges/unknowns = 213832

**

Finished reading in data

Outer boundary shape is

Rectangular

Time spent for unformatted I/O -

Time spent for I/O - 1.0754451999999999

10000

Generating finite element matrix

Generated finite element matrix

No.\ of non-zeros - 3414496

Average no.\ of non-zeros - 15

Total time spent- 25.834841199999996 secs

Time spent in loop= 24.807681599999999 secs

Generated diagonal preconditioner

Time for preconditioner - 1.1077387999999999

**

90.000000000000000 O. 90.000000000000000

(23874.682292021858, 0.)

Time spent in gen. soln. vector =

1.0519631999999999

seconds

sees

sees

19.514778000000000 secs

5O

Convergence achieved in 4397 iteratzons

Time spent in 4597 iterations = 584.26175160000003

Backscatter = 13.132205300654515

secs

90.000000000000000

(23874.649727818964, 0.)

Time spent in gen. soln. vector = 20.677881599999978

Convergence achieved in 1878 iterations

Time spent in 1878 iterations = 248.19567480000001

Backscatter = 12.346785646714235

5.0000000000000009 90.000000000000000

sees

secs

90.000000000000000

(23874.552995090075, 0.)

Time spent in gen. soln. vector = 20.646470399999998

Convergence achieved in 6561 iteratlons

Time spent in 6561 iterations = 866.82569879999994

Backscatter = 10.984172458513957

10.000000000000002 90.000000000000000

sees

secs

90.000000000000000

(23874.394947730074, 0.)

Time spent in gen. soln. vector = 20.678055200000017

Convergence achieved in 6112 iteratlons

Time spent in 6112 iterations = 807.46988880000004

Backscatter = 8.0404587189358921

15.000000000000002 90.000000000000000

sees

secs

90.000000000000000

(23874.180257205706, 0.)

Time spent in gen. soln. vector = 20.636231199999656

Convergence achieved in 6430 iterations

Time spent in 6430 iterations = 849.45422520000011

Backscatter = 4.5520666697643231

20.000000000000004 90.000000000000000

secs

sees

90.000000000000000

(23873.915286302414, 0.)

Time spent in gen. soln. vector = 20.640396400000100

Convergence achieved in 6303 iterations

Time spent in 6303 iterations - 832.76715800000011

Backscatter = 1.8286943794696267

25.000000000000000 90.000000000000000

secs

secs

90.000000000000000

(23873.607915069253, 0.)

Time spent in gen. soln. vector = 20.624299199999768

Convergence achieved in 4543 iterations

Time spent in 4543 iterations = 600.40641159999996

Backscatter = 2.1870075445461543

30.000000000000004 90.000000000000000

secs

secs

51

90.000000000000000

(23873.267321948337, 0.)

Time spent in gen. soln. vector = 20.654717999999775

Convergence achieved in 6015 iterations

Time spent in 6015 iterations - 794.75217840000005

Backscatter = 2.9538913638132449

35.000000000000007 90.000000000000000

secs

secs

90.000000000000000

(23872.903724276915, 0.)

Time spent in gen. soln. vector = 20.636641200000668

Convergence achieved in 6215 iterations

Time spent in 6215 iterations = 821.00750359999984

Backscatter = 4.3094572190189613

40.000000000000007 90.000000000000000

secs

secs

90.000000000000000

(23872.528083709803, 0.)

Time spent in gen. soln. vector _ 20.691929999999957

Convergence achieved in 3213 iterations

Time spent in 3213 iterations = 424.64956839999923

Backscatter = 4.0201582083152863

45.000000000000000 90.000000000000000

secs

secs

90.000000000000000

(23872.151783594894, 0.)

Time spent in gen. soln. vector - 20.679000399999495

Convergence achieved in 3196 iterations

Time spent in 3196 iterations - 422.23548159999973

Backscatter = 6.0710219487833603

50.000000000000000 90.000000000000000

secs

sees

90.000000000000000

(23871.786286832561, 0.)

Time spent in gen. soln. vector = 20.649760399999650

Convergence achieved in 5037 iterations

Time spent in 5037 iterations = 665.48518600000079

Backscatter = 6.0386806852857617

55.000000000000000 90.000000000000000

secs

secs

90.000000000000000

(23871.442784137245, 0.)

Time spent in gen. soln. vector - 20.630159599999388

Convergence achieved in 5096 iterations

Time spent in 5096 iterations = 673.35249359999943

Backscatter - 2.9883959797387871

60.000000000000007 90.000000000000000

secs

secs

90.000000000000000 65.000000000000000 90.000000000000000

(23871.131843785708, 0.)

Time spent in gen. soln. vector = 20.649902799999836 secs

Convergence achieved in 5096 iterations

52

Time spent in

Backscatter =

5096 iterations =

4.1405354898674034

673.46241600000030 secs

90.000000000000000

(23870.863074712492, 0.)

Time spent in gen. soln. vector = 20.627787199999148

Convergence achieved in 4893 iterations

Time spent in 4893 iterations = 646.38884879999932

Backscatter = 3.4527505854226375

70.000000000000014 90.000000000000000

secs

secs

90.000000000000000

(23870.644815085496, 0.)

Time spent in gen. soln. vector = 20.643494799998734

Convergence achieved in 3459 iterations

Time spent in 3459 iterations = 457.10817280000083

Backscatter = -0.42219432577245863

75.000000000000014 90.000000000000000

secs

secs

90.000000000000000

(23870.483858181193, 0.)

Time spent in gen. soln. vector = 20.630811200000608

Convergence achieved in 4885 iterations

Time spent in 4885 iterations = 645.37610479999967

Backscatter = 4.9808095185448629

80.000000000000014 90.000000000000000

sees

secs

90.000000000000000

(23870.385226404902, 0.)

Time spent in gen. soln. vector = 20.668981599999825

Convergence achieved in 1924 iterations

Time spent in 1924 iterations = 254.26892960000077

Backscatter = 8.0244739010739181

85.000000000000000 90.000000000000000

secs

secs

90.000000000000000

(23870.352002710646, 0.)

Time spent in gen. soln. vector - 20.646247599999697

Convergence achieved in 1747 iterations

Time spent in 1747 iterations = 231.11860320000051

Backscatter = 8.7459369327904284

90.000000000000000 90.000000000000000

secs

sees

Total time = 11978.956639599999 seconds

53

APPENDIX

A preprocessing algorithm to find
boundary surfaces and normals
m finite element data structures

Daniel C. Ross

Radiation Laboratory

• University of Michigan

Introduction

Electromagnetic analysis with the finite element method can be thought of as a four step process:

mesh generation, preprocessing, analysis and then postprocessing. The preprocessing step is often

incorporated into the analysis code or considered to be part of the mesh generation step. For large,

complex objects (especially in three dimensions) this task can be very cumbersome and should be con-
sidered as a separate process.

Preprocessing involves the extraction of information which are required for imposing boundary
conditions on metal surfaces, mesh truncation surfaces where some absorbing boundary c4ondition is

enforced, as well as material discontinuities and outward normals to these surfaces. For field calcula-

tions outside the region of the mesh, an integration contour or surface must also be found that com-

pletely encloses the object while passing through element centers where field derivatives can be

evaluated accurately for calculating the scattered field. Without an accurate evaluation of the field

derivatives on such a surface, substantial error (3dB) in far field calculations, and even more inaccu-

racy in near field calculations is likely to result. Although all of the above information could be speci-

fied during mesh generation, this'wofild involve in general, a great deal of unnecessary work. The goal
of thepreprocessor should be to minimizo fl_e_an,,(mnt of interaction with the usex.

54

The folho,, ing algorithms have bc_:.' developed for prepro:_.;sing a finite element ::_._.sh lbr _Ic<tro-

magnetic an:: .ysis. The mesh is only r .quired to contain a mil_ mum amour: of gcome_ ic irfform:_fi,,a

The algorithms will extract from the mesh: metal boundaries (any number of melal ol_jecis), oulcr

boundary, material boundaries, outward pointing normals, element edges lying on conductors (for

edge based analysis) and an integration contour passing through element centers. Ahhough the algo

rithms are appropriate for many different elements in two and three space dimensions, most of the

code fragments shown are for the particular case of tetrahedral elements.

The code is written in C since recursion and dynamic memory allocation are needed.

Data Structures

The mesh is specified by filling the following simple structures from the Universal file which con-

tains the node locations and element specifications as generated by the mesh generator.

int nnodes ;

int nelements;

struct node {

float x,y,z;
} *nodes;

struct element {

int nodes [4] ,material;
} *elements;

struct material{

float ReE, ImE, ReM, ImM;
} *materials;

Number of nodes in mesh
Number of elements in mesh

Array of node coordinates

Array of tetrahedral elements (4 nodes and a material
index number)

Array of materials (Complex e and It)

This is enough information to find metal surfaces, the outer surface of the mesh, material discon-

tinuities, outward pointing surface normals, element edges lying on metal surfaces and an integration

contour that encloses the target but passes through element centers. Nodal grouping is required only

to identify infinitely thin conductors or edges and comers that are to be treated differently by the finite

element code (singular elements). No more information is needed fi'om the user.

Once the mesh data structures are filled, the mesh tree must be created. The mesh tree is a two

dimensional array that stores the element numbers of elements that share a common node: The struc-

ture is cheap to fill and allows for the efficient extraction of all the needed information.

This operation fills the mesh tree with all of the elements in the mesh.

55

o

#define MAXCONNECTIONS

int **mesh tree

int n,m, nl_i;
O

O

O

50

mesh tree=(int **) calloc(nnodes+l,

sizeof(*mesh_tree)) ;

for (n=0 ; n<=nvert ices+ 1 ; n++)

mesh tree [n]= (int *) calloc(

MAXCONNECTIONS, sizeof(**mesh tree
));
O

O

O

for (n=l ;n<=nelements ;n++)

for (m=0;m<4 ;m++)

nl=elements[n] .vertices[m] ;
i=0;

while (mesh tree[nl] [i] !=0)
i=i+l ; --

mesh tree[nl] [i]=n;

mesh tree[nl] [i+l]=0;
}

Maximum number of edges sharing a node.
Two dimensi,_nal array to store mesh _ree.
Some integers.

Dynamically allocate memory for the mesh
tree and initialize tO zero.

Fill mesh tree with all elements.

•Find free surface

Operations

This algorithm operates on the mesh tree filled with all elements.
4

Let nface be the number of coplanar nodes defining an element face. (nface =3 for a tetrahedral ele-
ment.)

This algorithm efficiently scans the mesh tree for groups of n/ace coplanar nodes (faces) shared by
more than one element. A face which is not shared by more than one element is a free face.

56

#define L_AXCONNZCTIONS 50

struct freeElement{

int element;

int nodes[3];

int surface;

} *freeElements;

int nFreeElements;

int e,i,j,k,n,m, foundflag;

int nFreeElements=0;

int ns[4];

int ecount [3*MAXCONNECTIONS] [2] ;
o

o

o

for (n=l ; <=nelement s ;n++)

for (i=l; i<=4;i++)

switch (i) {

case 1 ;

ns[0]=elements[n].node[0];

ns [1]=elements In] .node [1] ;

ns [2] =elements [n] .node [2] ;

break;

case 2;

ns [0] =elements [n] .node [0] ;

ns [i] =elements [n] .node [i] ;

ns [2] =elements [n] .node [3] ;

break;

case 3;

ns [0] =elements [n] .node [I] ;

ns [I] =elements [n] .node [2] ;

ns [2] =elements [n] .node [3] ;

break;

case 4;

ns [0] =elements [n] .node [0] ;

ns [I] =elements [n] .node [2] ;

ns [2] =elements [n] .node [3] ;

break;

}

for (j=0; j<3*MAXCONNECTIONS; j++)

ecount[j] [0]=0;

ecount[j] [I]=0;

}

for (j=0;j<=2;j++) {

m=0 ;

while (mesh_tree[ns[j]] [m] !=0)

e=mesh_tree [ns [j]] [m] ;
k=0;

while (ecount[k] [0] !=e&&

ecount[k] [0] !=0)

Maximum number of edges sharing a
node.

Structure for storing free elements (trian-

gular faces). It contains: the element that

the face belongs to, the three nodes that
define the face,surface number.

Some integers

Common element counter

Every element
Every face
Get nodes for each face

Zero out common element counter

,,It

Fill common element counter

57

)
o

0

o

)

if (ecount{k] {0]=:0)

eceunt [k] [9]=e;

ecount [_-, Ii]--] ;
]

else

÷+ecour, t[_] [l I;

++m;

k=O;

foundflag=O ;

while (foundflag==O) {

while (ecount [k] [I] !=3

ecount [k] [i] !=0)
++k;

&&

if (ecount[k] [0]==n) ++k;

else foundflag=l ;

if (ecount[k] [1]<3) {

+ +nFreeE iement s;

freeElements [nFreeElements] .
element=n;

freeElements [nFreeElements].

nodes[0]=ns[0];

freeElements [nFreeElements] .

nodes [I]=ns [I] ;

freeElements [nFreeElements] .

nodes [2]=ns[2] ;

Add new elenlen[Io common e]clllen[
counter

Increment comm In e!ement counter

Determine if face is free or shared

Don't count self shared face

Test if free face
Free face

Update freeElements (face) data struc-
tures.

The following operations can be put here
if needed.

Upon completion of this operation there is one free surface. This will be divided into pieces (outer

surface, metal surfaces) by filling the mesh tree with the free elements only and doing a divide free
surfaee operation.

58

• Find It', ,erial disco.tinuilie_ _,,d normals

Inside ae find free surface 1o, ?, check the raaterial nt_ abers of eac_ element l:..dr sharing a face. If the\ are

different, ,store the shared face as _ free surface and calcula'.e the normal in the same manaer as above. Consi',,ten,,
normal directions are found by e_lsuring that the normal Foints towards the lower znaterial index.

if
0

0

0

}

(elements [n] .material < elements[ecount [k] [0] .material) {

•Find outward normals to free surface

To ensure that all free face normals have the correct sign, the following inexpensive test will guarantee that
all normals are pointing outward.

Given an element with a free surface defined by the four nodal points (xi, Yi, zi), i=1,2,3,4

n_e4

free turface

node 1 n_e2

FIGURE 1. Example element

the normal (to within a sign) is given by

h) x - h)

I (_'2 -- _'3) X (_'4 -- _'3)[

where

_'i = _xi + _Yi + _zi

To find the correct sign, compare the distance from the node not on the free surface (node 1 for the example

shown in figure 1) to a point that is a unit length along the normal in either direction. The direction giving the
larger distance is the correct one.

,-v I

59

• Divide ._ee surface tdnd mela'. L.urfaces ano outer _,,l _ace of mesh)

This a gorithm divides the ent, e free surfac," found by ne find free surface op, ration into dlsconnect

pieces. To accomplish this, the mesh tree is filled with all cf the free elements found by the find free surf:

operation and is recursively scanned to find groups of connected elements. Each surface element is tagged

with a surface number and the volume of each surface is compared. The surface with the largest volume is

then tagged as the outer surface and all other surfaces are tagged as metal surfaces. There can be multiple,
unconnected metal bodies in the mesh.

for (n=l ;n<=NFreeElement s ;n++)

for (m=0;m<3;m++) {

nl=FreeElements [n] .4;

i=0;

while(mesh tree[nl] [i] !=0)
mesh tree[nl] [i]=n;

mesh tree[nl] [i+l]=0;
}

surface=l ;

while (surface !=0) {
i=l;

j=0;

foundflag=0 ;

while (foundflag==0) {

while (mesh tree[i] [j]== -i)

if (mesh t?ee[i] [j]==0)

if (i <--=nvertices) {
i=i+l;

j=0;
}
else {

foundflag=l ;
sur face=0 ;

}
else {

foundflag=l ;

}
if

e=mesh_tree [i] [j] ;

(surface!=0) {

error=update (e, mesh tree,
FreeElements, surface) ;

nsur faces=sur face;

sur face=sur face+ 1;

i=i+l;

j=j+l;

Fill mesh tree with free surface elements

only.

Find connected free elements by recursive

scanning the mesh tree.

Drop out when mesh tree is empty

Call to recursive function for updating me.,

tree. (See below) 4

Keep count of distinct surfaces.

6o ORIGINAL PAGE IS

OF POOR QUALITY

surface)

struct Fr eElement{
lilt element ;

int Freelqodes[l] ;

int FreeVertices[3] ;

int surface;

};

'pdate (mesh tr_e,FreeF _ements,

int e, surface;

struct FreeElement *FreeElements;
int **mesh tree;

{

int n[3], j,m, f,i,error;

n [0]=FreeElements [e] .FreeVertices [0] ;

n [1]=FreeElements [e] .FreeVertices [1] ;

n[2]=FreeElements[e] .FreeVertices[2] ;

for (i=0;i<3;i++) {

j=0;

m=n [i] ;

while(mesh tree[m] [j] !=0) {

f=mesh tree[m] [j];

if (f v -I) {

FreeElements [f] .surface=

surface;

mesh tree[m] [j] = -I;

error=update(f ,mesh tree,

FreeElements, surface) ;
}

j=j+l;

return (i) ;

Recl_,'sive functic' to remov-, connected

fTc_ elements from mesh !:_c.

Recursive call

Now that the free surface has been split into pieces, the surface with the largest volume must be the

outer surface and all others must be metal surfaces. To calculate the volumes of the surfaces, add up the
contributions from each free face as

V

Nn=nr

e=l

where

¢'1 = _(x3 -x 2) +Y (Y3 -Y2) + 2 (z 3 - z2)

¢'2 = J_ (x4 - x 2) + Y (Y4 - Y2) + _ (z4 - z2)

ro = J_ (x2) +Y (Y2) + _ (z2)

and (xi, Yi, zi) ale the nodal coordinates of the element having a free face (see figure 1) and Nsurf is thenumber of free faces in the surface.

OR_,NAL PA(_: tS

OF POOR QUALITY 61

• l:ind edges 13in_2 on a conducior

Now th',- all of tl_," '-tee surface_ have beep round, each f: ee face be')nging to a _-etal surf;,,.. (all sur-

faces except the su, ,..c.e with the largest vol:Jlne) can be split into thc,., edges. This informal :,t_ is neces-
sary for odge-based finite elemert analysis.

• Find enclosing integration contour

This operation finds a surface (three-dimensions) or contour (two-dimensions) that completely

encloses the target and passes through element centers. This routine reties on the previous ones since it
requires the divided free surfaces and material interfaces.

The mesh tree must be loaded with all elements (not just free surface elements). The tree is then

scanned for elements having the following properties:

1 - The element's material is air (or surrounding media) and has one, two or three nodes lying on a
metal surface or a dielectric interface.

2 - The element does not have more than one face on either a metal surface or a dielectric interface.

Requirement 1 makes sure that all of the scatterer (metal and dielectric) is enclosed. Requirement 2

ensures that the surface/contour will be closed and relatively smooth.

Any element meeting these requirements is divided by extracting all its vertices that have one and only

one node on a metal surface or dielectric interface. A new node is created at the mid point of each vertex

and a new face is created from these points. Taken collectively, these new faces make up a closed surface/

contour that completely encloses the scatterer and passes through element centers where field derivatives
can be calculated accurately.

In figure 2, part of the integration contour for a two-dimensional coated conductor with a crack is
shown.

Integration
K contour

FIGURE 2. Integration contour around a coated conductor with a crack

62
ORiGiNAL PA_ #S

OF POOR (2UAL_'r'Y

